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ABSTRACT

In this paper the analysis of estimates operating on dependent data is
considered. Special dependent data structures are considered and the analysis
is made for three different choices of contamination and performance distance
measures.

For contamination and performance measures both being ﬁévy (Hampel model),
an analysis that is particularly oriented toward fast convergence of the esti-
mate to a value that is stable (robust) inside the contaminated family is
undertaken., The minimum sample size to satisfy certain éerformance is inves-
tigated and it is found that the problem reduces to finding continuous, ab-
solﬁtely bounded estimates with logarithms of their moment generating function
slowly increasing with the absolute value of the argument for all data distri-

butions considered.

1. ° INTRODUCTION

Humans have always taken satisfaction in the game of "outsmarting Nature."
This game becomes particularly intriguing when Nature tries to confuse its

human opponents by slightly changing the underlying statistical rules that
specify its behavior. - To beat Nature's game, then, the human player must

follow strategies that are not very sensitive to such statistical changes.

* This work was supported by the Air Force Grant AFOSR 77-3156.




The design of such statistical variation-resistant strategies varies with
the particular objective of the human player at the time and the decision
rules evolviﬁg from this design are called robust.

Robust decision rules have been studied by several statisticians [1,3,7,
10,12] and engineers [11,13,18] from different points of view. The promising
qualitative analysis of robust es;imation first introduced by Hampel [ 10]
has been used and extended [12,18], but the performance criterion has always
been expressed through the Lévy distance of the data as well as the estimator
distributions. Specifically, an estimate §(Xn) using the data Xn has been
called robust (or weakly robust according to [18]) at some distribution Qo R
if every distribution Q that is close to Qo in the Levy distance sense
results to §(Xn) distribution that is Lévy distance close to the §(Xn) dis-
tribution resulting from Qo-distributed data, This definition of robustness,
while leading to comstructive analysis of robust estimators [10,18], has two
disadvantages: It does not offer convergence rates of the estimates for large
number of data and it may be too demanding or even not representative enough
for some applications. In addition,.the constructive analysis of '"Lévy robust"
estimators has been accomplished only for independent Xn components.

In particular, one of the properties that characterize an estimate
§(Xn) that is "Lévy robust™ at some one-dimensional distribution F and is
applied on independent data, is continuity at Fo [10,18]. This property,
which actually means closeness of the values §(Xn), Q(Xm) for vectors Xn,

Xm that specify experimental distributions that are both close to Fo , guar-
antees convergence of §(Xn) to some constant depending on Fo » but it does
not specify the convergence rate.

Also, in some applications the preservation of some specific, less general

than the Lévy distance, characteristic may be desirable. 1In this case the per-




formance criterion is different and so are the desirable propertigs of the
estimator. Performance criteria that are easier to calculate than the Lévy
distance may be preferred.

Finally, the design of estimators that are "robust” in the presence of
dependent data structures is certainly a problem that is challenging as well
as realistically interesting.

In section 2 of the present paper some preliminary discussion on pre-
vious analysis of fobustness on statistically contaminated distribution and
on possible spaces, differént performance criteria is presented.

In section 3, the design of 'Vasershtein robust'" estimators is under-
taken. The dependence structure of the data is naturally incorporated in
this case if the distortion or penalty measure is séuare difference. |

In section -4, properties of estimators that are robust as mappings from
a data Lévy-contaminated space to an estimate space characterized by a Vaser-
shtein performance criferion are discussed.

In section 5, a design method of "Lévy robust estimates" is presented
that incorporates an exponential:convergence rate. Special dependence struc-
ture of the data is considered.

Section 6’inc1udes examples of estimators that are '"robust" in the senses

of sections 3, 4 and 5.

2. PRELIMINARIES

Robustness has lately been defined [10,18] as stability of some stochastic
distance measure defined on the estimator probability space. Specifically,
if Xn denotes the vector of n discrete data,'Qo is some well-known multi-
dimensional cumulative distribution applied on Xn (where Qon is the n-

dimensional distribution evolving from Qo), Q is some arbitrary cumulative

distribution on Xn; n=1,2,...% dl(',-) is a stochastic distance measure




defined on the data distribution space; §n(xn) is a scalar estimate that is
a deterministic function of the data Xn; D(§n), Do(ﬁn) are the distributions
of ﬁn(xn) determined through Q, Q0 respectively; and dzn(-,-) is a

’

stochastic distance measure defined on the distribution space D(§n), then the

sequence {§n} is weakly robust at Qo (as defined in [18]) if given ¢ > 0 ,
there is some 8(€) > 0 such that: For every Q satisfying dl(Qo,Q) < 6(;),
dzn(Do(Qn),D(Qn)) < e; VYn is implied.

It is obvious from the above definition of weak robustness that the sto-
chastic distances dl(',°), dzn(-,-) must be chosen carefully to satisfy the
designer's specific objective. 1In particular, the distance dl(-,-) repre-
sents the kind of Qo statistical contamination considered, while dzn(-,-)
is the performance measure of the estimate.

In the choice of dl(-,-) and 'dzn(-,-) the good representation of the
particular model as wall as the calculability of the distances must be taken
into consideration.

In the study éresented in [17], it became apﬁarent that among the plethora
of stochastic distances existing, there are some more and some less approach-
able. Specifically, the Lévy distance although useful in the robust analysis
is often very hard to calculate. On the other hand, the Vasershtein distance
is simpler in some cases and if also representative of the model considered,
it becomés an excellent contamination or performance measure choice.

In the present study, only Lévy and Vasershtein distance choices will be
considered. Therefore, their definition and some of their properties that
are related to the analysis in this paper are presented.

Both Lévy and Vasershtein distances include a distortion or penalty méa-
sure p(+,*) applied on the outcomes of the distributions involved. Specifi-

cally, if we concentrate our attention on discrete data structures, let Xn,




Yn be two different n-data values and let p(Xn,Yn) be their relative distor-
tion. Also, let QZ’ Qn be two different cumulative distributions of Xn .
' ' R o
- Then, the Lévy distance dL (Q:,Qn) and the Vasershtein distance de(Qn’Qn)
P

are defined as follows:
o —3 - o -
de(Qn,Qn) = infle:Q0(X ) < Q (VY _:p(X ,Y ) <€) + ¢,

Q (X)) < Q(UY :p(X,¥ ) <€) +¢; VX (1)

4, (Q2,Q) = inf Eq. (-, PRI ' (2)
p

2n
all an(-,~) inducing

QZ,Qn marginals

The same distances can be defined for general multivariate distributions QO,Q,

- inducing Qg,Qn Vn in the following way:
- 4 (@°,Q) = sup 4, (Q2,Q ) (3)
L ? L *n’"n
P n p
4, (@°,Q) = sup d (Q2,Q) NG
P n p

In [18] it was shown that dL (Qg,Qn) is nondecreasing with increasing n

for Q:, Qn being both products of one-dimensional distributiong. It is

straight forward to show that the same is true for arbitrary Qg, Qn . The

Vagsershtein distance dv (Qg,Qn), on the other hand, can be independent of

n for stationary data sgructures and proper choice of the distortion (penalty)

measure p(-,+) . Indeed, let Xn = fxi; i=1,...,n) be a sample vector

from a wide-stationary process x(t) whose autocovariance function is Ro(y)
1 and whose n-dimensional discrete distribution is represented by Qg . Also,
let Qn be the discrete representation of another wide stationary process

y(t) with autocovariance function R(T) . If the Vasershtein distance is

defined in the space of jointly stationary distributions and if
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1
p(X Y ) = X - Yn]'[xn - Y1, where [ ]' means transpose, then as it
was found in [15] and [17], one obtains
4y (@2,Q) = inf (R°(0) + R(0) - 2R°(0) + (@° - m)?) (5)
P R°(0)
where RC(T) is the crosscovariance function of x(t), y(t) , n® 1is the

mean of x(t) and m the mean of y(t) . The expression in (5) is obviously

independent of n . Furthermore, if

o o .0 ik o -1, o

P°(0 = £ RO(K)e " = R7(0) = (2m ™[ PO(N)ar (6)
=a® =17
- jleA -1,"

P(\) = £ R(k)e " =R(0) = 2m [ P(NdA ¢))
k=~ . -1

if Qn,Qg are Gaussian, then the Rc(O) that satisfies the infimum in (5)

was found in [15] to be given by the expression:

m
R°0) = 2m ™[ /P°(MP(N) d) (8)
-7 .

which provides the following expression of the Vasershtein distance for sta-

tionary distribution Gaussian spaces:

. ' ™
& (@2,Q) =4, (@°,0 = @n [ *°() - FHar+ @° - )’
P ' p -m , S o
9

where p(X .Y ) =3 (x -Y]'(X -%] (10)

If Q;, Qn are not Gaussian, the expression on the left of (9) becomes a
o
lower bound on de(Qn’Qn) .
The expression in (9) is simple, computable analytically in most cases,
and independent of the sample size n . It is also significant to observe
from (9) that the wide sense stationary Gaussian distributions that are "close"

with respect to a square error, are the ones whose means and discrete spectra

functions are "close."




The constructive analysis of "robust' estimators that was presented in
[10] and [18] in addition to being "Lé&vy robust," it was also limited in the
case of independent data structures. It was found there that the sequence

{§n(xn)] of estimates is weakly robust at some Q01 in the sense of both the

dl(-,-), dzn(-,-) distances being Lévy, if: a) §n(xh) is continuous for
every n as a real function with E' Euclidean domain, b) §n(Xn) is con-
tinuous at Qol’ this continuity meaning that for every Xn’ Xm such that
they determine experimental distributions ny <, n, (y) that are both Lévy

n m
close to Q it is implied that ‘sn(Xn) - sm(Ym)l is small.

ol ?
The above analysis does not provide convergence rates of the estimate
§n(Xn) . Such a rate is important to the designer that is‘looking not only
for "robust" estimates but also for sufficient sample sizes also. It is im-
portant to have an analysis that answers the double question: 'What kind of
estimate will be robust for a given contaminate& family and how many data
are sufficient to guarantee a certain minimum level of performance inside the
same family?"
An attempt to answer the above question for certain dependent data struc~
tures is even more valuable. Having the dependent data situations in mind,
we will first study estimates that are robust for contamination and perform-
ance measures that are not both Lévy._ Then, we will present én analysis that
although applied to Lévy distribution contami;afion and Lévy performance mea-
sure, it defers from the classical ome in [10] and {18] in the fact that it
can apply to dependent data and it incorporates thé convergence rate of the.

estimates.

3.  VASERSHTEIN ROBUST ESTIMATORS

In this section we will assume that the human player has the information

that Nature uses a Vasershtein algorithm to contaminate its underline statistics.




That is, we consider the measure of contamination to be the Vasershtein dis-
tance and we pick as distortion measure the square error one. If, in addition,
Nature picks its statistics from the wide-sense stationary distribution space
F that surrounds a well-known distribution Qd , then the Vasershtein distance

between Qo and an arbitrary member Q € ¥ 1is given by (as expressed in (9)

of section 2):

. |
4, @0 2 @Y (B - F Yar + @ - m? (11)
-7
where P _
p(Xn,Yn) = -tl;{xn - Y] '[xn - Y] (12)

mo,m the one-dimensional means corresponding to Qo and Q and PO(X),
P()) the respective discrete spectral densities. We have equalify in (11)
if QZ,Qn distributions are both Gaussian.

From (11) it is apparent that theVVasefshtein p-contaminated Gaussian
distribution families are the families with contaminated means and spectral
densities.

For consideration .of arbitrary - Q distributions. (even when . Q° 1is

Gaussian) we can transform the contamination measure to:
o A '
- -1p, / ) 2. .0 2
dP;:ﬁ_(ng’-;Q);; em T /220 = FONTar+ @s m)Es (13) -
= -1 :

In other words, we suppose that- nature contaminates the data-statistics by
contaminating the spectral density and the mean of the underline stationary
processs -

Let us now suppose that the observer's performance measure is the mean
square-one. That is,-if p parameters must be estimated from the collected
data .Xn s then the robustness of the p-~dimensional estimate ,§n(xn) is
evaluated through a mean square error value. In other words, the estimate

designer is fully satisfied if the average mean square distortion between




the § (Xn) he calculates when Nature uses Qo underline statistics and the
n
o \ o
value Sn(Yn) he finds when Q is true, remains small when Q ,Q are close
enough in the Vasershtein distance sense.
1f D°(§n), D'(§n) are the distributions of §n(xn) evolving from

QO,Q respectively, then

0,a A -1 P 2 ‘
&y (0°(8),D(8)) =p " L infE e ){ LKD) -8 ()T (1)
p i=1 ? R
rni( . ) inducing p° (sin)’D(sin)
where
‘§n(xn) = {gin(xﬁ); 1=1,...,p} (15)
if
- o - _ g
ED°(§in){sin(xn)) =m 3 DD(§in){sin(xn)} =m (16)
o 2 2
EDO(§ ){[ m(xn) - m } = c NQOF ED(gm){[ in(®y) - my ] }
in
0,,(0 (17)

The following lemma can be expressed:

Lemma 1

The-distancein-(14) ‘is bounded from-below by the expression

(n(s>n<s>)—f>:(</ (o ~ o O+ @S - m ) (18)

Proof—-
PO O,a ~
For -any-joint distribufion rni(' »*). with D (sin)’ D(sin) ) marginals,

1’f~rc§n(‘0) “the crosscovariance determined by- .rn'i.(-ﬁ," . , then, the matrix
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[o] (o4
cin(o) oin(o)
Cc
0:n(0) %40

must be nonnegative definite.

Therefore,

/2,0, (0) 2 af (0)

Then,
B (oyryBun®y) - 8,017 =02 (0) +0, (0) - 205 _(0)
+ @ - m ) 200 (0) +0, (0) - 262 (0) 0, (0 + @ - m, )
= Vo5 - L + @, - )’
and

n N -1 P
4 O°G0E 20 P2 (60,0 - TN 4 g - m )

The expression in (18) is equal to the distance in (14) if and only if
D(§in) can be the distribution of a linear transformation of the variable
distributed as in D°(§in), for every 1<i<p .

We will summarize the observations we made up to now by the following

three definition:

Definition 1

We will call a sequence [§n) of p-dimensional estimates p-Vasershtein

weakly robust inside a wide sense stationary distribution family ¥ and at

some Qo 1f and only if given € > 0 , there is some &8(e) > 0 such that:
For P°(x),m° being the spectral density and the mean induced by Qo, P(\),m

being the spectral density and mean of some Q € ¥ and for
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™
em B - B AR + @° - m) < 8(e)
-1

it is implied that:
-1P . 75 — 2 o 2
P 151{[ Oin(o - cin(o)] + (min - min) }J<e;Vn

o o , .
where ain(O), ain(O), m, s ™~ are given by (17) and (16) respectively.

Observations

1. If the ¥ family in definition 1 is a Gaussian stationary family and
the estimates §in(xn) are linear transformations of the data, then the

expression

k1
@ A0 - AN + @ - w?
-1

-1 |4 o 2 o 2
P izltgﬁsin(o -,A;ig?ﬁib + (o - m ) }

are the exact Vasershtein distances of the distributions Qo, Q and D°(§1n),

D(8, ), respectively.

in
2. It is evident from definition 1 that since we want the closeness of the

estimate means and variances guaranteed by the closeness of just the spectral
densities and the means of the data distribufions, we must limit the estimates

to linear transformations of the observations.

Let us define the linear estimates

t™MB

§in(xn) = a ; (k)x, (19)

k=1
where xn = {xk; k =1,...,n] and the coefficients ani(k) are real, scalar,
and, in general, different for different dimensionality n . To study ro-

bustness, we need the means and variances of the estimate in (19) under data
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distributions Qo and Q . Indeed, we have

n
E{§in(xn)/Q° distr) =n° ¥ ani(k)

m =
in k=1
n

m, = E{Ein(xn) /Q distr) = mkzlani(k)

n (20)
o‘i’n(O) = kzzzlani(k)ani(z)li((xk - n%) (x, - n°))

n (o]

= kﬁzflani(k)ani(Z)R (k - £) -

™ n L
(2m) '1‘[111’0( )\)k'zzzlani (k) ani(z) e"J (k-£)A dx

where Q° is wide sense stationary with autocovariance RO(T) and power spec-

tral demsity PO(M).
From the above expression we finally obtain:
m n
- -ik\,.2
05a(® = @M PP £ a_ (e NP0 @1)
-1 k=1
and similarlyf
n n
-1 -jk\,2 : ,
01a(® = @D BN £ o, (e N ay (22)
-1 k=1

for the variance under distribution Q . Applying the Schwartz inequality:

1) n . k1 n
j/;°(x) AW T a e MPar< ([ r Il £ ani(k)e-jk)‘llde]% )
- k=1 -1 k=1

1T n
([ PO T o 00N PaE

-1 1

on [/ozn(o - /oin(O)]2

we obtain from (21) and (22):
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n n
A 0 - on? < en Y /A - ,r-(mz“kzlam(k)e-jkxuz o
-17 - i

(23)
while from (21) we get directly:
o 2 _ .o 2, 2 2
(= mp)” = @ - WL T g (0] NS

The expressions in (23) and (24) .express the connection between data and
estimate statistics needed to specify p-Vasershtein weak robustness, as given
by definition 1.

From the analysis done above, and the expression of p-Vasershtein weak
robustness in definition 1, a lemma offering a constructive properties of

estimates that are Vasershtein weak robust is obtained.

Lemma 2

A p-dimensional estimate §n(Xn) that is p-Vasershtein weak robust, as
expressed by definition 1, must be linear. If this linear estimate is given

by the expressions:

. n
§n(xn) = (sm(xn>; i=1,...,p}, ;m<xn> = kflani(k)}ﬁ(

a sufficient condition for the present semse of robustness is that the sequences

(2| )
T (k)
k=1 ani

converge to some finite value for every 1< i<p.

Proof:

n
Let the sequence { X \ani(k)l) converge to some Ai < @ , Then, also
k=1

n i i’

a 2 o 2 _ .2 2
(ZTa (K" <(Zla WD <A< max AT; Vn .
k=1 "i k=1 i 1<i<p
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Given e > 0 , pick

and the conditions in definition 1 are satisfied.

: n
According to lemma 2, the experimental mean .§in(X ) = 1 z Xy is a

p-Vasershtein weakly robust estimate. The condition of lemma 2 iai be easily
seen to satisfy robustness (not just weak robustness) properties inside some
data-distribution contaminated family.

Concluding this section, we want to emphasize that the robustness struc-
ture presented here considers dependent data with dependence eipressed by ar-
bitrary wide-sense stationary distributions. This dependence was explicitly

incorporated in theArobustness only through the spectral densities of these

distributions.

4. LEVY-VASERSHTEIN ROBUST ESTIMATORS

In this section we consider the case that the contamination measure on
- ‘the data distribution space is the Lévy distance, while the performance mea-

sure on the space of the estimates is the Vasershtein-type distance

- - 1P
a4, (0° ),0(8 ) = 5 [«é A0 - /o (012 + (m) - m ) (25)

The characteristics o (0), (0), i » W ére given by expre;;i;ns (16)
and (17) of the previous section and the distance in (25) is equal to the
Vasershtein distance again -i1f the data distribution family is a wide sense
stationary family and the estimates are linear.

The robustness considered here is precisely expressed by the following

definition.
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Definition 2

A sequence of p-dimensional estimates {§n(Xn)} is weakly p-Levy-
Vasershtein robust at some distribution Qo if and only if: given €3> 0,
there is some 6(?) > 0 such that for every distribution Q satisfying:

. ,4
4 (@0 < 80

it is implied that

dvt(D°(§n) ,D(§n)) <e;Vn.

The distance dL (QO,Q) is defined by expressions (1) an (3) and the
distance dvt(D°(§n),§(§n)) by expression (25). The dependence structure
of the data (as expressed by Qo and Q) 1is arbitrary at this point.

In the analysis for the discovery of constructive properties of the esti-
mates that are robust in the p-Lévy-Vasershtein sense, we will need to bound
the absolute values of the §n(xn) components éin(xn); i=1,...,p, for every
i and every n . That restriction is mostly very useful realistically when-
ever we are seeking the estimation of parameters whose values (we knﬁw in ad-
vance) move inside a limited interval. The value restriction on the estimates
rejects a priori the unacceptably (or dangerously) false decisions on the
parameters of interest.

Similarly to the method presented in [18], we will brake the constructive
analysis of the p-ﬁ%vy-Vasershtein weakly robust estimates into two parts.

One for sample sizes n bounded from above by some n and one for the n's

that exceed this bound no .

We proceed first with the bounded n part, presenting the following lemma.

Lemma 3

Let an estimate §t;(Xn) = (§m(xn); 1< i< pl} be absolutely bounded for
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every 1, n, X and let all the ﬁin(xn) components be continuous as real
functions defined on the E° Euclidean space Y n . Then, given some natural
number n, and some € > 0 , there is some b(e,no) > 0 such that V¥ :n < n and
for Qn :

(o]
4 (@) < 8

it is implied that:

O, ,~ ~
dvt(D (8),D(5)) < e

The proof of this lemma is presented in appendix A . The continuity
of §in(xn) as a real function is from the p(Xn,Yn) distortion measure on

the data that is incorporated in the Lévy distance, to the absolute value

in(xn) - sin(Yn)| of the estimates. No consideration of par-

difference ‘§
ticular dependence structure of the data was necessary at this point.

The lemma we present next combines the properties of the estimator fhat
satisfy the p-Lévy-Vasershtein weak robust requirements for finite as well as
infinite sample sizes n .

For the transition to the infinite n step, the specification of a par-
ticular dependence structure of the data is necessary. In particular, we will
assume that the family of data statistics considered is limited fo m-dependent

distributions. In addition, the data will be collected in groups of k con-

secutive data and the groups will be in distance of m data from each other.

Specifically, the data vector Xn will consist, in this case, of k-dimensional
vectors .in; i= 1,2,...;11 . The components of each in vector are depen-
dent, but X ., is independent of ij for 1 # 3.

The experimental distribution of the vector Xn is defined then as

follows
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k 1 .
nxn(wl,...,uk) = a] {# of in s with 3 < W, X, < WseeesXy < uk]
(26)
A continuity of the estimate that is actually a property of the estimator in-

dicating stochastic stability around the data central distribution Qo is

defined below:

Definition 3

For data Xn consisting of in independent vectors and experimental
distributions defined by (26), an estimator §n(xn) = (Qin(xn); 1<i _<_ p}
is continuous at Q; if and only if:

Given é > 0 , there is some p(e) >0, ng such that: For every Xn,

Yn satisfying
k o
dp (ng , Q) < p(e)
p n
& (nf, Q) < u(e)
Ly 2 %) SH
p m

and : n>n
o
it is implied:
m:x|sin(xn) - sim‘Ym)I <e
Combination of lemma 3 and definition 3 leads to the following lemma -

whose proof can be found in Appendix A.

Lemma 4
Let §n(xn) = {Qin(xn); 1< 1 <p}] be absolutely bounded for every i,
n, Xn . Let every '§in(Xn) be a p-continuous real function on E* Vn and

let §n(Xn) be continuous at QZ where Xn is formed from n., independent

1
k-dimensional data vectors. Then the estimate §n(xn) is p-Lévy-Vasershtein

weakly robust.
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The p included in lemma 4 and.definition 2 indicates the distqrtion
measure included in the Levy distance while, as we show in the previous section,
the Vasershtein type performance dvt(',-) 1s the result of the consideration
of the square error data measure in the expression of the Vasershtein dis-
tance.

The estimator properties thgt guarantee weak robustness through the con-
tamination and performance measures considered in this section are similar to
the ones of the classical Lévy-Levy model analyzed in [10] and [18]. Here the
absolute boundness of fhe estimate is an additional desirable property.

The estimators that are not weakly robust in the Lévy-Lévy sense are not
robust in the Lévy-Vasershtein sense also.

The means for the design of the properly "robust estimates are similar in
both of the above cases.

In the following section we present an alternative analysis method that'v
Incorporates convergence rates and gives us a better feeling as to the proper

design methods for Lévy contamination, Lévy performance robust estimates.

5. A NEW APPROACH TO LEVY-LEVY ROBUST ESTIMATION

The robust models that were considered by Hampel [10] and Papantoni-Kazakos
[18] were based on Lévy-contaminated data distribution families and Livy per-
formance criterion of the estimates. Specifically, if p(Xn,Yn) is some dis-

tortion (penalty) measure defined on the data, robustness is defined as

: ’
follows according to this model:

Definition &4

A sequence {én(xn)} of p-dimensional estimates is Lévy-Lévy weakly ro-
bust at Qo if and only if given € > 0 , there is some &8(€) > 0 such that:

For every Q such that
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de(Q°,Q) < 8(e)

it is implied that:
) de(n°(§n),n(§n)) <e;Vn

D°(§n), D(§n) are the esti@ate p~-dimensional distributions induced by
Qo(Xn), Q(Xn)’ respectively. Also, the distributions Qo, Q generate, in
general, dependent Xn vectors.

If ng is some finite natural number, the stability property expressed
by definition 4 is satisfied for n < n if the components ain(xn) of the
estimate §n(Xn) are all continuous as functions with E° FEuclidean domain,
where n any natural number. The proof of this is similar to the corresponding
proof for independent data appearing in [18] énd to the proof of lemma 3 of

the present paper that can be found in appendix A. Formally speaking:

Lemma 4

If §n(Xn) is continuous as a function on E" V n s then, given e > 0
and n s there is some b(e,ﬁo) > 0 such that:
=~ For every distribution Q satisfying . T

d; (@°,Q) < 8(e,n)
P
it is implied:

4 0°@G),p(8)) <e;Vngn

(e}
p

For data samples that are unlimited in number, we would like to investi-
gate properties of the estimates that, in addition to satisfying the conditions
in definition 4, they also guarantee fast convergence. Such an analysis will

provide the designer with the additional valuable information of the sample

sizes necessary to satisfy a given performance. The performance measure in
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this case is, of course, the Levy deviation of the estimate whenever the data

distributions move inside a certain sphere.

Before we proceed in thelanalysis, we need the assumption of a certain
dependence structure of the data. As in the previous section, we will assume
that the data vector .X.n consists of n, k-dimensional independent vectors
ij 3 ) = 1,...,n1; n= kn1 .

To avoid unnecessary generalities and to make the analysis moreAmeaningful,
we will also consider a particular, quite general form of estimates. Specifi-
cally, we will assume‘ﬁhat to estimate the component s of the parameter
vector Sp we apply a different, in general, continuous transformation on
each of the first q k-size data blocks and form a linear combination of
these transformations. We repeat the same transformation to the next gk
data block, etc. and we finally average out the resulting values. The assump-
tion is, of course, that we always receive data in qk size blocks. To ex~

press the above description mathematically, we write:

. 17 1 A
1%aq) = n.%) 7 2t 50 (27

where xk,jL the jfth k-size block of data fr??hEPe,Y??tPE,;§h x » and

q
piz(-) a continuous scalar function on the Ek Euclidean space for every
1< 2<q. The continuity of p,iz(-) guarantees satisfaction of lentﬁa 4,

We consider estimators of the same general nature for all the Sp components,
therefore we finally obtain a system of estimates as given by (27) for 1<
i<p. Wewill observe at this point that since the k-dimensional éata vec=-
tors ij have been assumed to be indepenq§nt f?o?,féCh other, the functions
piL(xk,jz) are independent random variables for different ji's.

For convenience, we will pick here the distortion measure p that is in-

- cluded- in -the Lévy distances of definition 4 to be given by:




21

1 n . ‘ — - 3 'Y
P (X s ) = ;izllxi - yi|, X = {xi, i=1,...,n};

Y = {yi; i=1,...,n (28)

Some different distortion (penalty) measures p(°,*) lead to analysis similar
to the one that will be presented in this section, therefore the choice in
(28) is not truly restrictive.

Starting on the analysis of the eétimators in (27), let us suppose that
for some € > 0 , some n, and some Qo, Q1 distributions we have:

0,a 1,4
de ( (ank)’D (s

aqi)) < € (29)

(o]

According to Strassen ([2], Th. 11) the condition (29) is true if and only
if there is some 2p-dimensional distribution D°1(-,~) with D°(.), D1(°)

marginals such that
q

. zflaz[ Mg e 500~ Mgy 500) |2 <e (30)

~

p°lid
P

™Mo

alz
i=1 j=
In (30), the estimate form in (27) is considered and xk,jL’ Yk,jz are dis-
tributed as in Qo, Q1 respectively.

The joint distribution D01 can be translated to a distribution Qo1
with Qo, Q1 marginals instead through a spébific estimate choice. Since
the Qo, Q1 distributions are representing data df>£:§i;édi;&ependent blocks,

fQQ*'*andf Dgi'rwill'be such that they maintain this independence. In other

01 . s gl -
words, D in (30) should be such that the differences [uil(xk,jl) -
uiL(Yk jl)] are independent from each other for different "j£# wvalues.
?
Observing- expression (30), we see that due to the:truth of the inequality:
q

? olely 2 «
zd” (3| £ . -
P {n|j___1 ol (G gg) =y Oy 112 60 2
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;
> p°lt v {—l):
1<i<p - e

n

q S
ST oalu (X L) - w0 1] > e
‘j L £=1 aglhy o (X 50 127k, 52

P

to have (29) satisfied, it is sufficient that:

q
ol,1l € . .
(= | zz a L (X, jz) b il 2 s s s vincigy

e M B

_ 31)
So, if for some D01 choice with Qo, Q marginals, (31) is satisfied, so

is (29). For additional siﬁplification we will assume that we are working

on distribution spaces that generate stationary data. Then,

(o] (o] _ .
Q (x'k,j.e = zk) = Q (xk,mr - Zk) ’ v j’e’ mr
QY =20 = QY =2 5 V3L, mr

2

In this case the distances dL (QO,Q), dL

P .
by the k-dimensional distributidns Q;, Qi © Also, we can then define:

(D°(§n), D(§n)) are generated

. |
mig = B lhy (X g0
Q (32)
1 |
L EQ1{”1L(Yk,jz)}
1

where mgz, m , are independent of 3j4 . From (32)7and (31) we obtain that

if we want (29) satisfied, it is sufficient to require the following condition:

n°1t|ln Z ( ) - m,] - (O ) - m,l]+
n 2 o e B30 Bl - TGy gp) - myyd
+ga[mo -l >e <€ Viil<i<p (33)
A T AV A
where
_ .0 1
EDol{p'i..e(xk,j!,) - b g = my - my, (34)

Directly from (33).we can express the following stronger condition,vto guarantee
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satisfaction of (29):
M2 jgl é;zllm@k,jz) - mfyl - Dug (e o) - mdl]
>c-%laz||mgz-mizl}<£;Vi:1<i§_p (35)
T g=1 - P -

At this point we find necessary to summarize our analysis up to this point in

the following Corollary:

Corbllagz 1
If, given € > 0 , there is some n, and some 6(e,na) > 0 such that:
Vn> n_ and every Qlt satisfying:
& @°,Q) < 8(e,n )
L k’k ’"a
o

there is some DO; with marginals Ql‘:, Q; implying:
olp1 > 3 o R S
" {IEJ.‘:‘l Li:lalup‘iz(xk,j.e) ") - LGy 5p) - mdl ]

q 1
2> € 'zillaznmzz - mul} S.';' 3 V1<i<p | (36)

where p.iz(°) continuous on -Ek for 1<4<q; 1<i<p, then the esti-

mate described by (27) is Lévy-Lévy weakly robust according to definitiom 4.

Now that we have summarized the observations up to now, we will continue

with analysis of the conditions of corollary 1.

Observing condition (36) we realize that if we want it satisfied for

given € > 0 , the sum

4 o 1 .
LEllaz“miL = miz‘ I R R B N (37)
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must be smaller than € . In other Words, for given e > 0, n,we would
like to find some b(e,na) > 0 that first guarantees the satisfaction of

the inequality

l:l‘a“enmiz - mizl < €, i where e, > 0 and such that el <~.e“
(38)
. for every - Qk dL (Qk,Qk) < 8(e,n ) and then it secures the existence of
some Dk1 with Qk’Qk marginals that satisfies (36)
Let us pick e, = e¢/2 . Then, if p,u’(xk) is bounded absolutely by
- gsome constant B for every 1< i<py:1<£<q and Xk » we know from

lemma 3 and its proof in appendix A that given

€
q
2 T |a |
2=1 4
there is some
f—— 5| > 0
2 |a |
2=1
such that
q o -
z21|az| gy - “‘iz‘ <3

After this last observation, we can go one step further and express the fol-'

lowing corollary that is a simplified form of corollary 1:

Corollary 2
Let the set of p.u'(xk) estimates in (27) be continuous on Ek and sb-
solutely bounded by some B> 0 for every 1< £<q, 1 <i<p.

Let
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2% |a,|
z la
=1 4

1 .
be a constant such that: "if Qk is satisfying

o .1 e
° 2t la

|
=1 *

then

1 1 €
z |a ‘lmo -m | < =
R LT IRVARS 8

for some given € > 0 . In this case, if for the same above given € > 0 ,

and for some natural number n_ o, there i3 some b(e,na) >0:

8(e,n) < 8 , k, B

2% a, |
z la
2=1 4

that for every n 2;na ~and Qi satisfying
d; (Q2,Qh) < 8(e,n)
L,p, k’ "k ’"a

there is some DP; with Q;,Qi marginals that satisfies the condition:

n |
DL !;;jfl Sl B 1) - mlp) - Doy (B 5 - mpll 293 <

Yy1i<i<p (39)

Then the estimate in (27) is Lévy-Ldvy weakly robust by definition &.

The boundness condition on the estimates that appeared in section 4 is
included again in corollary 2. As mentioned before, this condition is a

realistic property that protects the estimate values from wandering in the
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space of unacceptable values.

We will now concentrate our attention on expression (39), hoping to obtain
a comparatively small lowér bound on the sample size n that satisfies the
bound ;/p . That, of course, we expect for particular p'i!,(') choices.

We will point out again that the brackets
o 1
(Db g0) = mygl - oYy gg) - mygl] (40)

in (39) are zero mean independent variables for every different jf wvalue..:

A theorem expressed by Revész ([5], pg. 57) will be extremely useful here.

We state the theorem below.

Theorem 1
Let X sKggeeesX be independent, zero mean, not necessarily i.denticaily
distributed variables. Then, the probability

x1+x2+...+xn ]
P (M) =r{] >

n
converges to zero exponentially for any N> 0, i.e., there is some- C > 0

and some 0 < v< 1 such that:

Pn(m < C\’n, .

Loanme. . PPN

if and only if: For all 17 > 0O there exists a constant en > 0 and some

t:.n > 0 such that:

n t
n Efe xk} < & e‘tlT}n whenever |t‘ <t
k=1 = =

Also, the probability Pn(T]) cannot converge faster than exponentially and

---- - -the.constants C and v that express the bound on the probability Pn(T\)
(8- -t

are chosen as follows: C = 8,n; v = n; where & some value in the
interval (0,T) . ’
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We will apply the~above theorem on condition (39) to design robust esti-
mates that, in addition to satisfying the continuity and boundness properties
‘e#pressed in corollary 2, they also have the strong characteristic of the
fastest possible convergence to their asymptotic value, which through the ab-
solute boundness is guaranteed to be stable inside stationary Qz-Lévy-contami-
nated distribution families, whenever the contamination is small enough.
Directly from theorem 1, from the fact that the expressions in (40), are

independent and zero mean for different jf wvalues and from the observation

that the sums

9 o 1
Lflaz[[”u(xk,jz) - mygl - e (T ) - mypl] (41)

are identically distributed for every j , we obtain that the left part of

inequality (39) converges exponentially if and only if:

For all e > 0 there exists some constant 3&/2 > 0 and some t§/2 >0
such that
0 1 '€
ta Ll o (X)) -my 1 -Lhy () -my 11 le |50
( mE e h Sy © (42)
1<<q B |

Due to theorem 1, the larger te/Z we can find the faster the converg-
ence of the estimators to their asymptotic value. Also, we must emphasize
here that we are seeking a te/2 that is common for all Qi that are members
of the data distribution contaminated family.

As an additional observation on (42), we see that since itg left part_is
equal to one for t =0, ec/z cannot be smaller than one. Seeking the
smallest possible 82/2 we may as well pick 83/2 =1,

In this case, condition (42) can take the form:
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: 1
q ta,[[p, , (X )-m],]-[ 0¥, )-m 1]
F e le oLUiy o (X ) -my o1 =Ty , (G ) -my g )< lelt
£=1 Dz
v el <t

2 - (43)
where f;)z some positive value and D;l some 2k-dimensional distributioﬁ
with Qo, Q; marginals. Each of the logarithmic expressions in (43) is a
convex U function of t with qinimum at t =0 and minimum value equal '
to zero. This is true done to the fact that each of these logarithmic functions
has positive second derivative for every t and first derivative at t =0
that is equal to zero.. The above observations are true for every Q;, Q;,

Dzl choice. Also, the sum of the logarithmic functions in (43) is also con-
vex U with minimum that is equal to zero and haPpens at t =0,

Due to the above observations, there is always some té/z (for given
€ > 0) that satisfies (43). The analysis should be concentrated now to de-
signing the constants a, and the functions “1z(') in a way that will make
the common for all distributions in the contaﬁinated family te/2 as large
as ﬁossible.

Before we express some thoughts on that we will state the following theo~

rem:

Theorem 2

Let the set of estimates in (27) be continuous Ek and absolutely
bounded by some B > 0 for every 1< £<q; 1<i<p . Then, if for some |
8§ > 0 and such that it is nonlarger than the

6...——.‘—.._’ k,B

2% |a,|
T la
g=1

included in corollary 2, a common te/2 > 0 can be found for all the members

of the Qz-contaminated family characterized by:
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Prp (@5, < 8 - (44)
Pot ok’ =
where te/z is such that it satisfies the expression
: o -1
q ta,fu, (X )-m ] ~ta,fp, (X )-m ] .. ‘
PR s T L TN e T Uy < lelE sy
=1 Q° Q = t17
k ' k
' 1
v |e] < te/ps V Q satisfying (44)
the estimate in (27) 1is weakly robust and it converges to its asymptotic
value with rate expressed by the bound:
e B
n({-3)t '
g 27"¢/2 ¢
e /2, ¢eqo, p 46)

The absolute boundness of piz(-) guarantees stability of the piz(-) asymp-
totic value inside the contaminated family expressed by (44).
Also, for performance equal to € (where € > 0) it is sufficient that

we choose then number of samples equal to:

. “7)
(C = E)telz

{ is some value in (0,€/2) and it is the same in both expressions (46) and

47).

In theorem 2 we picked D§1(X,Y) = QE(X):éi(Y).""ﬁé»ﬁill now concentrate
on expression (45) to draw some useful conclusions. Indeed we cén separate
the expression (45) into two parts: One including'the behavior of the esti-
mate af the central distribution Qﬁ and one describing the same behavior at
the distributions included in thé contaminated family in (44). |

Through the separation we just mentioned we can write (45) in the following

way: .
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, 1
q ta,[p, , (X )-m,] q -ta,{p, ,(X)m ] -
ZLnEO{e ’!, u'xk u"}+ ZLnElfe 22714 n u]ﬁ“:l%
=1 Q) =1 Q.
’vr-l.t.|_<_t‘e"/2 (48)

Both sums on the left part of (48) are convex U with minimum equal to zero
and assumed at t = 0 . The less sharp both of these sums are as functions
of t , the larger té/z will be. for given §> 0 . Since Q:: is a well-
defined distribution, the set [az, “'i!,(.); 1<£<q,1<i< p} can be de~

signed to make the sum

T
'g“. fn E {et%t Hp () mu]}

49)
£=1 Q;

-~ ------a8.less sharp at t = 0 as possible.

n

We will call an estimate {az, ‘“i!,(xk); 1<2<4q;1<1i< p) in @27)

a fast estimate at Q; if it makes the expression in (49) a slowly increasing

function.of t around t = 0. _The continuity of the functions p.u,(') on

Ek and their boundness, guarantees closeness of the moment generating func-

tions o
~tagln, o (%) -my ] )
E 1{«e ‘
Q~ . -~ 0 -
Tk -ta,[p, , (X )-m ]
to thg c?ntral. moment gengrating functipn E {e LTl Xk u~}

o
-Qk ' o
for Qlt belonging to the contaminated family (44). Therefore, for fast ex-

- :x x>ponential..convergenee, .then;.itais.sufficient to design the estimator in (27)

to make the logarithmic expression of threwxrncment generatinﬁg—“_f.t.xrncti».onsw at
Q:: (expression (49)) as slowly increasing with t around 't = 0 as .possible.

As conclusion, rwe ‘firally express the following theorem:

Theorem 3

If the set of estimates in (27) is continuous as a function on Ek, ab-

solutely bounded for every 1< 4 <4, 1<i<p and it is a fast estimate
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at ‘Qﬁ', then it is also weakly robust at Qz » and it converges fast and

expoﬁéﬁfially to its stable mean.

| The advantage of the method presented in this section, in comparison to
Hampel's method is that the design of the weakly robﬁét estimates reduces to
real function properties and to moment generating functions at the central
distribution Q§ . Furthermore,”this mthod has the tremendous advantage of
treating finite data saﬁples (through the smallest 'na that achieves the re-
quired performance) and not just asymptotic situations as in [1]. Finally,
the Lévy-performance criterion is stronger than the small-variance criterion
treated by Huber [1].

Finding the smallest te/2 in theorem 2 that will satisfy all members

of the 'Q;-contaminated_family is a task’samples ?f>yhi?h’vi?} bg shown in

the following section.

Concluding this section, we will mention that theorem 1 has also been
applied in [19] to find confidence intervgls{for“ﬁayes error estima-
tioﬁ which were subsequently used to determine the optimal degree of quanti-

zation.

6.  FURTHER DISCUSSION ON SECTIONS 3, 4 AND 5

In this section we will present some discussion on the application of
the theory that appears in the previous sections. Our discussion will be

mostly oriented toward expressing methods and suggesting ideas for the actual ~~ =7 %77

design of the robust estimators under consideration. The possibilities for
such designs are many and lengthy and they will appear in detail in future work

(under preparation). I ‘ oo e e
1. We will first staft with the Vasershtein robust estimators that are
analyzed in section 3. According to lemma 2, such an estimator (where the

underlying distortion measure is the square error) must be linear. That is:
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' n
§,x) = (8 (X)s1=1,...,0); 8 (X) = ALY (50)

Also, a sufficient condition for robustness in this case is that each of the

sequences Y e

(kg‘.llani(k) D si=1,...,p
,convergés to some finite value.. ‘Any
n
(2 lag @]

v- -+ . that is.geometri'c with multiplying factor o  smaller than ope belaopgs to the .
above group. Also, the experimental mean is obviously Vasershtein robust.
In general, one will look for linear estimates that converge at the cen-
tral well-known distribution to the desired value and whose_ coefficients -

satisfy the absolute convergence property mentioned above. For example, let

. the central distribution Qo be m~dependent. ,Then accumulate the data in
m-groups and form the estimate e p e e
1 nm
m(xm) =5 k 1 ' (k)xk (51)

e --v-uz;mwher-eithii,previmvcnef.ficiam;s‘;;ani.(k)‘:;in, 450) are. related. to.the. "rlnn"“' ,f(.k.) "Bucha i
o "y : i
in (51) by
1 ,
(k) - a : (k) , (52)

Due=to-the-m-dependence. .of - '1295,-“,5 the-sums-—.

a1 (jg)ﬁi' L0
' )3 a: seoey yooe -
e v . k 1_._nm’j" xk k=jm -— i‘ xk Fiom . EPR I

are independent from each other and according to theorem 1, the estimate in

(51) -converges-exponentially -and—¢n-probabilityto --
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12 2
m - limn " T a (k) =m_* lim I a. (k) (53)
° g kel ™l ° k=1 ™
where m.o the one-dimensional mean determined by Qo .
‘ " A n
If we pick all the coefficlents positive and design the sum I a (k)
k=1 "1

so that it converges to the desired value at Qo , then at the same time the
robustness sufficient condition is also satisfied and the estimate in (51) is

stable inside the Vasershtein contaminated family.

2. For the Lévy-Vasershtein robustness (as found in section 4), one should
seek for continuous as real functions and continuous at the central distribu-
tion estimates that are also absolutely bounded. This last property is the

only additional to the ones required by the robust in the Hampel sense esti-

mates.

0f course, all estimates that are not Hampel robust (such as the experi-
mental mean), are not robust in the present sense either.
" Also, the L-estimators

n
8in(Xp) = jflbjx(j) (34)

F e ce e T AU AW AW L S e 0 LI L D LTI Y S ki

where X = fxi}, X(1) < X(2) <...< x(n), the or‘dered component's of Xn,
are not in general absolutely bounded, therefore not Lévy-Vasershtein robust

in general.

On the contrary, a truncated version of the estimates in (54) can be Lévy-

Vasershtein robust with proper choice of the coefficients b By truncated

j -
version of (54) we mean that we substitute each x(j) in it by its output

when passed through the following nonlinearity:

-8 8!
B




34

Finally, using the approach of the M-estimators, we can find the estimate

§1n(xn) as the truncated zeros of a sum [18]:

n
z \lri(xj -8, (X)) : (55)
j=1
where wi(') a smooth enough function. The zeros of the expression in (55)

. will be passed through a nonlinearity as the one mentioned above, or any other

that cuts off all estimate values that are absolutelylhigher than B.

3. The fast robustness introduced in section 5 is important and deserves
special attention. Indeed, the method introduced there can be considered

small sample since the effort is toward designing estimates that, besides being

robust, converge to their stable (for small deviations of the data distribu-

tion from the central one) mean fast.

The measure of performance is Lévy distance. In other words, if a spe-
cific contaminated family of data distributions is given, the stability of the
estimate in it is measured through the longest Levy distance of the estimate
distribution at some Q from the estimate distribution at Q° , where Q° is
the central well-known data distribution and Q moves inside the contaminated
family.

As explained in section 5, if p scalar estimates are calculated from
the same data and the performance required is a fixed € > 0 , then the minimum

number of data n_ that will satisfy this performance is given by

in 2
n = e——2>Fr - S

(56)
5o ';)tela

where { 1is some arbitrary constant in (0,€/2) and t§/4 'is for given

1

estimates (of (27) form and k-dependent group data) the smallest t .
, ‘ Q ,e/4
k’

such that
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1 .
q ~ta,[p, (X )-m ] ‘
Pame le AP ey g
£=1 Qk

1 - (57
Q. e/t

. -Tmru_\hwhene.wQé moves in the.gongidered.data<contaminated family and the smallest

Y

t. is taken among these Q1 members.
1 k
Qk’ e/l"

To achieve this minimum t€/4 as large as possible, we go backward.

Specifically, we are looking for this estimate set ‘{az; piz(xk); 1< £4<q;

1<i< p} that achieves the largest t 1 for the worst Q;': choice in-
Q ,e/4
side the specific given contaminated family. This worst case corresponds to
1
q ~ta [p, (X )-m;,]
T tn E_ (e .L s xk ;L }
2=1

function with the fastest increase for ltl increasing.
Specific continuous and absolutely bounded functions uiz(xk) can be
chosen with some of their characteristics left flexible. The design of these

characteristics becomes a maximum problem (find largest ¢t 1 for the

Qk’te/4

logarithmic moment generating expression the sharpest in the family) and the

*‘methods for solving-it -are simi'lar'to the ones applied in [1] and [19].
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APPENDIX

Proof of Lemma 3

In the distance th(D°(§n) ,D(§)) in (25), the terms

("Oin(o - “oint ”2

and (tn;fn - min)2 appear. We develop upper bounds on each of them. Indeed,

we obtain:

(“azn(o - mz < “aci)n(o - 'cint }H,oin(O) + “cin: ) |

= e o® (0 -0y €0y = |[55 (X )Q_(ax ) - [85 (X )Qdx )

- @) - @ %]
s s e o | R R 30 axn) < [82 e ) | + (@) - @, )2 a1
. - in*'n" "o* T in*'n n in in )

If the estimate gin(xn) is absolutely bounded from above by some Ai >0,

then we obtain from (A.1):

¢ cgn(o --"cin[ jjz < -“ain(xn) + l’gin(Yn) l |‘s‘i.n(xn) - §in(Yn)| ’

- D(AX_,dY ) + 2A,[|8, (x) -8, (1) ID(an,dYn)‘

<A fls ) -8 @)p(ax avy (4.2)

where D(xn’Yn) some distribution with Q°(x;l), Q(Yn) marginals. From (A.2)

"" we also obtain, for the same D(Xn,Yn):

(“""‘i)n(o) - 'cin: j)z + (mci)n -.mi )2

n

1 PO i < 6Ai‘“si_n(xn) -’sin(Yn) lD(dxn’dYn)

’ o, ~
For robustness from dL(Qo,Q) to dV(D (Sn) ,D(Sn)) . we require:
That given e > 0 , there is some 8(€) > 0 such that

SRR dS(Q QY < () = d (%8 ),D(E ) <€ ; V.
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Or:
Given €>0 , there is some 6(8) > 0 :

For d_(Q_,Q) < 8(¢)

= max (6A,[[S, (X) - 8 (¥ )|p(ax ,d¥ )) <e;Vn
I<i<p

vhere D(X Y) has respective marginals Q:(Xn) and Qn(Yn) . If given

¢>0,there is for every 1< i <p some 61(‘§)>0:

j‘lain(xn) Y )ID(dx ¥ ) < o 6A ; V¥n

Tadd T

2 - o - L . N i 4 TRl laall M lsmY EL B B - . RN =
Then

8(€) = min ai(é)
1<i<p

o 0.
JIE, dL(%"Qn) < '6’1‘.rr(e)*‘ » then there is some V n D(Xn,Yn)_;- with -er(xn) ’Q“(Yn)'

marginals (Strassen [2], Th. 11) such that
D(Xn,Yn:p(Xn,Yn) > bin(c)

Pick this D(xn’Yn) and write:

J‘|§in(xn) 8, (¥) ID(dx ,dY )
= I8, a) -3, &) I_D'(dxn,dyt‘l) + [l5, ) - am(xn) |p(ax_,av )
X Y :p(X .Y )<b 1n<°) X Y :p(X Y )>8, (e) -

oom S ZArainge) + -“sin(Yn) - sin(xn) |D(dxn’d-Yn)
Xn,Yn:p(Xn,Yn) < Gin(e)

i;Vn

since |sin(xn)| <A
Let §in(xn) be continuous function everywhere on ES . Then, given

€ >0 and Xn , there is some 6(ei,Xn) > 0 such that

Frap ) < 3k =l - i< g

1nn i

(- BT A R O I T Ty
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Choose a sequence (cj} -of positive, monotonically decreasing toward

zero components and define

Aj = {xn:a(ej,xn) > ci}

Then
n ‘n
C - 4 =
AJ. [ Aj+1 E ; UAj E
Define ' )
T X)) = {Yn:p(xn,Yn) < a(ei.,xn)}
6(‘ci,xn) |
B.=U)] .U (X):X EA.}
: k| { n’ m h
8(e 3% )
Then B = E"

3 SB541 0 By

Now, given ‘I]i > 0, there is some »ki(n,Tli) such that ‘

Qo UBj >1 - 'I]i
Denote: g, = UB,.
, in j
Pick '
(]
e e — Tl S eeag——
i }SAi A | 3&2{ .
| e Q-
8. (¢) = minlec, (n,—/83),—=
in {kl 36A:2L 36A21

Then




&

= WA - ST ¥ W] D'LAL‘{J>IO wiSugiV'en.w PickLagaLnD D(

»”ain(xn) - gin(Yn) |D(dxn’dYn)

ngiain(é) + 5, @) - 5, ) Ipax_,av )

X €€

n in -
Yn : p(Xn ,Yn)<6 in( €)

+ [15,,00) - 8, (%) [p(ax ,av )
x_€el '
Yn: p(Xn,Yn)<61n( €)
in"n
xnee'i.n

Yn : p(Xn,Yn) < ain( e)

-~ x <288, (€) + 24T, + e
[ ] e e [}
< 2A, + 2A + -
1 36Ai i 36Ai 184,  6A;

For n< n o, wé can pick

= bino(e) = min[-—-—e? s min Ck (n,-J?)]

36A i 36A
i -0 i

to satisfy

4 Qo) < 8y (8 = 8y, (9)

L3t 1 15

6A1

Proof of Lemma &4

C o) - 8 ) I Lar ) < g s Vg

41

<248, () 24, + 5, (¥) -8 (X )|pax ,av )

(o]

To take care of n > n o, let dL(Qo,Q) < bn(e) for n> n o, where

D(X Y, :p(X .Y ) > 8 (¢,) < 8 (e)

and write

xﬁ’Yﬁ)“ with Qon’Qn marginals such that
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~ - ~ . , “e->
J“si.n(xn) sin(Yn) |D(dxn’.dYn) < ZAian( i) +
+ I‘sin(xn) - sin(Yn) h.).,(dxn’dYn) s n> no
Xn,Yn:p(Xh,Yn)'< Gn(ci)

For arbitrary Q°(°) there is nothing that can be done at this point. So,

let QO(Q) be m dependent. That ié, if XXy pe e X is distributed

““"“"‘”’“’"‘“’a‘c.':%mﬂ:ltn“g‘"tfb"'Qé("")’,'“t:he'tr~'*e\f~e'l'y-'n x" depends on only m preceding and

following data.

Then, let Xn consist of x‘ki; i =1,2,,.. vectors of consecutive data

SEeeed Xhathve "m  data gaps betweed X ¢ <and X, . Then, X- ;' X153 £ #°§
. i Ji+1

1 k)
are independent by Qo(-) . Let n= kn1 and define the following experi-

mental distribution:

. [N k ;,L,\ £ PR - .. . - " - .Y FN PREE~ -
nxn(wl,...,mk) ay {# of Xk's with x, < w, X, < 0,,...,x < uk]

) k :
The typical sequences Xn are such that nxn(u)l,...,mk) _ approaches Q;(Xk)
for n 1large enough.
Or, given T]i > 0 , there is some n and some 6(1]1) > 0 such that
- o o k '
Va>n_ =Q {qu(Qk,nxn) 28l <y
Let
. o k
e, = [xn.de(Qk,%[n) < e(ni)}
Ttlen i - - R N

o : Py
Q(ﬂm._)>1-T]1,Vn>no : .

Going back on page 18 we have now

S TIPS Rt S Ol e . R e o0 LY e M ALE L WETT11 e ¢ A A W TR Tlaek o P

N W

A S ¥

-4




43

|8, (x) -8, (¥ )|p(ax _,d¥ ) < 2a,8 (s,)
in* n” in* ' n n° n in' i

Xé&ni N
Y :p(X LY )<8 (e ) ‘ oo

Y : p(xn Yn)<6n(c i)

S 288, (e) + 24T, + JI8, ) - &, ) |p(ax ,av )
x bl g VV B x C X e& e

nni
atPEy Y)<6(¢)

Let ,
ST n mcp( ¥ <8 Gep) rdy <nX ng y < Geee) SVa>m e

where Cp depends on the measure p(‘,-) Then,

J1Ex) -8, ) Incax ,ax )

* < 2A,8 (c ) +2aM, + J‘lsm(xn) -8, O )In(dxn,aYn) A
‘ ' dp (Qk’“x )<6(TIi)
T T 'Yn’d:r. (nx ,nY )<Cp(0(=i))”
p m m - _
d.L:(; »*) .satisfying the triangle ‘inequality and, being symmetric, we have:
P’ o
: T %%@ﬁ* %ifsunyl CoT e
- Soy~from—above we -have «
I | ARC S R ST BRI CO TR -
+ j[s -~ (X)) - "’"IY‘HD(dX »aY ).
Y {Qk,nx ")<6(Tli
7 o4 (Qk,nY 7‘<a(ni) + ¢ <a(ei>>

- Let--8 iﬁ(xﬁ)»» -be ‘continuous -at- ‘-;le—{ . - That is, given _e& i-/3v—>e:0 > there is--

some p.(ci/.?{) > 0 such that

] - + 18 - 8 () Incax ,av) + I8, ) - 8, ) Ipax_,ax_)

E A

[ X . S B T st




k .0 .

= 18,05 - 5,@)) | < ¢, /3

. o - '
where si(Qk) the value that sin(xn) converges. for n - o« ,

Choose:

S R S
L 6Ay 3ea2

¢
€, = —
i 6A1

8(1,) = min(8(T, = ;6—:5), %u(—l—s;—i»

i
» Al B Y 6(c ) =m1n(c (%p{lé—:] Cé ) R s B SEW DTN £ W A T L
36Ai
Then
e an s - 3A 8Cep)t 28T + [, (X)) - 8, (¥ ) |p(ax_,av )

xn’Yn:d'Lp(Qlt’n;n) < 8(1,)
de<<2°,1§‘“) < () + € (8C5))
€ , & € ¢

- < + + = .
- 18Ai 18Ai 18Ai 6Ai

Finally, pick for every i :

A

8(¢) = min 6(81) =

i e SR
-1 € »
.- o= min min{ s min ¢, (n, -_E_) c (%H{ ])) —
_' 1 m“:zf n<n_ “ 48Ai R e o

and thenﬁdv(D°(§n),D(§n))~<‘e .

for 4 (Q%,Q) < 8(e) .
P '




